Respiratory Failure: Type 1 or Type 2?

To recap the last blog post about oxygen saturations versus PaO2:

  • Respiration is the process of gas exchange, both at the alveoli to blood interface and blood to cellular tissue interface
  • Oxygen has to bind to haemoglobin in order to be effectively transported around the body, but must dissociate from the haemoglobin prior to be taken up by the cells
  • The amount of haemoglobin in the body that has oxygen attached is measured via oxygen saturations while the amount of oxygen freely floating in the blood unattached to haemoglobin is measured via PaO2
  • When we experience a failure to oxygenate, we have a problem with our oxygen
  • A decrease in oxygen saturations below 90% will cause the body to increase it’s ventilatory effort as a compensatory mechanism
  • A failure to oxygenate is known as type 1 respiratory failure, defined as a decreased PaO2 with a normal carbon dioxide level

In this blog post, we are going to discuss type 1 and type 2 respiratory failure in detail and explore which pathophysiological respiratory conditions lead to which type of failure. Continue reading